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FOREWCRD

The stochastic duel vis first formulated and analyzed by G.

Trevor Williams and the author, in a paper presented on 1U May 1966

at the 4-th Annual ORSA meeting in Washington, D.C. Since then,

about fifty research papers have been written by authors scattered

in many parts of the world. This fairly substantial body of results

has proven of value to many military OR analysts, both in and out of

the services. However, much of it is inaccessible, or mthematically

obtuse. Consequently, we have set out to remedy this situation, with

the support of the U. S. Army Research Office.

This report is approximately one-half of the total output of

the project. The material prepared so far is sufficiently self-

contained as to warrant issuance at this time. The remainder of the

report will be forthcoming within the next year, at which time, the

entire manuscript will be updated and brought together as one entity.

The present work consists, primarily, of two parts. In Part

I an exposition of the two principal methods of deriving results is

given. These are the mixture technique and the semi-Markov terminat-

ing renewal process technique. For the first time, to the best of ]
* the author's knowledge, it is carefully and explicitly shown that,

in fact, these are the techniques being used and precisely how they

are being used; and, finally, how they are related. We hope to

clear up much of the obscurity and mystery surrounding the utility

of the techniques and also to L licate when there is (or is not) an

.,.



advantage to using one or the other. This is done, primarily, by carry-

ing Ln example through each technique.

PNrt II is a comprehensive, exhaustive and fully annotated bib-

liography of all research papers on the topic, known to the author.

It has been formatted to uniformly display, in detail, what has been

accomplished in each paper.

The additional work, to be done later, will include:

(1) an historical and expository introduction;

(2) possibly, some further exposition on techniques, and,

most importantly,

(3) a comprehensive compendium of all known results reduced

to a comon notation and organized to facilitate the

location of any desired result.

It is believed that this project will

(1) make all results easily and conveniently available to the

analyst, and

(2) will aid the research worker in identifying what has been

done (to prevent reinventing the wheel) and what has not

been done, so that he may direct his efforts in a produc-

tive direction.

The author would be grateful to learn of any inadvertant mros-

takes, amissions, or other errors which imiy have occurred.

I, iii
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PART I

AN EXPOSITION ON TECHIUIES

In the fundauental duel (FD)p two contestants, A and B, tire

at each other at certain l.ntervals and either hit or miss on each round

fired. The duel terminates when either, or both, are hit. The hit

probabilities for each are constant from round to round and, In general,

are different for each. The time between rounds may be a continuous random

variable or may be a constant, and, in general, is different for each. The

contestants both start at time sero with unloaded weapons and fire their

first rounds sometime later. They both have unlimited amition and un-

limited time.

The aralysis begins by first considering a marksman firing at a

passive target, under the same conditions given above, until ne hits it.

This is called the fundamental marksman problem (FM). From this we may

solve the duel problem by considering each marksman to be firing independ-

ently of the other. The first to hit his passive target wins. This is

entirely equivalent to the fundamental duel, a the model described above

in no way links the actions of one duelist to those of the other.

Conas uently, let us first consider the case of the marksman versus

a passive target, and further, leo vs confine ourselves here to the situa-

tion where his interfiring time is a continuous random variable. It is

clear that he might hit on his first round fired, or possibly on the

second, or, in fact, on any round, providing he hai failed to hit an all

precedirg rounds. That is, if his hit probability is p, (q - 1-p), then

the probability that his first (and fatal) hit is on the nth round and is

n-1pnq If his interfiring time has probability density function (pdf)

-1-



given by t(t), then t(t) is also his pdf to a hit an the first round.

If he hits on the second round after falling an the first., his pdf to a

hit is the convolution of f(t) vith itslefp denoted by r* r(t). This is

because if he has fired twice, he bha made two selections (at randoa) from

f(t) and added them together to determi&?n his time to fire the second

round. Continuing# his pdf of time to fire the nth iound is given

by f•f*f* .. *f(t) -fn'(t), i.e., n convolutions of f(t) with

itself.

The stochastic process described above in called a mixture and my. bo

described as follows. Let T be the continuous randou variable, time to a

hit, and let Xi, I m 1,2,3, ... # be the continuous random variables, time

between firing epochs, where the X1 are known, independent and identically

distributed (iid) as X with pdf f(t). Then

T w Xi wth probability p

a X 2  pq- 1 + X2" o

*X142+X3  *.*x~ n-l)LI + Y-2 + x3 + .. + X,, .,q-.

where all the rows above are the mutually exclusive and exhauative vays of

obtaining a hit. Now, let h(t) be the pdf of T and f(t) be the pdf

of each Xi, then by the basic property of mixtures:

-2-
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P[t <T < t + dt)

*h(t)dt *pf(tdt. + pq*(t~dt

÷ pq' (t)dt + +.. ÷ pq !- (t)dt +

I.

or

h(t) a np*' fI(t) *(2)

This expression can be greatly simplified by converting each side to a

characteristic function (Fourier transform) as follows:

O(u) f *let h(t)dt and •(u) - f e (t)dt (3)

Using the definitions (3) in Equation (2), and the convolution property of

characteristic functions (cf):

*(,,) . !- q9%(,) . p,(,) [qq(,•)]l'

n-l n--

ID IP 4)
1-q-•• •

vhere the Indicated sum Is va"lid because q 4(u) < 1, for all u. Equation

c() can now be Inverted to give

L-iut ~-iut Pud""h(t) 0 -Ut.(u)du - -r- •"Lu 2 (u(5)h•t) 2wi -q•u

I 
I3-
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We should note, In pasing, that the result In Equation (4) can be written

down at once after Inspecting Equation (1). This comes about because in

U-1(1), the sequence of probabiities p pq ,, in the proba-

bility ass function (pmf) of the random variable N, the round number

on which a hit occurs. It is geometric and given by

n - , n•12..

- 0 , elsewhere ,

which has a geometric transform

- pz 2 (qz)n-1  (6)1 - qz "

There is a theorem (see, Giffin, 1975, Eqn. 4-28) which says that for a

mixture of lid random variables:

*(u) - G1N(u)] • (7)

Therefore, from (3) and (6), we have Imediately *(u) -i Cu as

before.

The solution to the duel my now be written down. If TA and TB

are the random variables, times for A and B to hit a passive target,

with pdf's hA(t) and hB(t), respectively, then the. probability that

A wins the duel, P[A], is

S-4-
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K(AI -P[TA < T I

- P[t < TA < tt+- •B > tldt

*I hA(t)( hB(Odt)dt

0 i
J. hA(t) 1ý(Ota ,1)

where the third line is justified by the independence of TA An TB.

This may be put in more tractable form using characteristic func-

tione by a theorem of Parseval which states,

f1 (x) f2 (x)dx - f(-u) ; (u)du . (9)

Using (9) in (8),

P(AJ -u du . (10)

It is easily shown that the I(-u) function has no poles in the complex

lower half-plane and that it vanishes on a large semicircle, C, in the

lower half-plane as R -. " (see Fig. 1).

Thus, if we go to complex u, by anasytic continuation, the second

term in the integrand is zero and we have

: -5-
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r -E OA 0 (-i ) d
P(A] - A(U

JE U

where 9 is less than the distance to the nearest pole in the lower half

of the complex u plane. Since a draw is impossible with continuous

firing times, P(B] - 1 - P(A].

CA

R-i
C

(b)

0 u

-R--ic -

(a)

FIGURE 1

Path of Integration for P(A] in Equation (11);
also, frequently given as "

p -6-



Mach of the literature uses the Laplace transform (LT) of the time

ftmctions involved, but we shall always use the characteristic function for

two reasons:

(1) the cf always exists, whereas the LT may not, and

(2) the nmnerical integration of the Fourier transform (cfI

has received extensive attention and many efficient

algorithms are available (see, for example, Brigham, 1974).

Finally, let us emphasize the efficiency and economy of using charac-

teristic functions by comparing Equation (1) with the solution to the duel

without their use. Patting (2) with appropriate subscripts for A and B

into (8), we have

P[A PA qA- Af t) PB qB B

0 n=l t n-l

and from (11),

P[A] -i PA (A (-u) PB B(u) duS(I (1

We see that in (13) we have one integration to perform, whereas in (12), we

have two integrations of two infinite sums, each term of which involves

iterated convolutions. This is indeed an enormous simplification.

.7
i• -7-
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2. SOLUTION MTHODS

In this section we shall examine several solution techniques comonly

used in the literature. For this parpose, let us solve the PH problem,

slightly modified as follows. A marksman fires with constant hit probabil-

ity, pv at a passive target. His target is destroyed when he hits it

twice. His interfiring times are continuous, iid, and have a general

(unspecified) pdf.

A. The Mixture and Characteristic Function Technique

Using the notation given above and proceeding as before,

p, (n)

T = X1 + Y with probability p

- Xl+,. x2  3  pqp + qpp

- x1 + x2 + x 3 + X4  pqqp+ qqpp+qq (14)

n 1

X-. x +(fn1 2 n-2
1X n pq

Note that, in general, the nth term has a coefficient ( n- 1 because
1

we can have the first hit anywhere in the first n- 1 positions, while the
th

second hit must be on the n firing

Continuing as before,

us

h(t) - Z (,-. -. t)-

5 I -8-



- nd taking the cf of both sides
I

O(Un P.(u P1( q 4P (u )),-

Ln

n=O

Recognizing the sum as the negative binomial series vith parameter 2, we

may immediately write

12
0(u) - p1 q (u)(l -qqV(u)) ] - P 1)(u) (16)" ~ q q•.Cu) "

Two coments are in order here. First, the pmf for the round number (N)

on which the process terminates is given by the right-hand column of (14)

and is, of course, a negative binomial with parameter 2, identical to the

one above. Its geometric transform is

1-z) qz

and using (7),

(u) P(u)

- -. .



which is the same as (16). SecoIdlY, we ncte that this result is obvious

because the time to a second hit is simply the time to a first hit plus the

independent time to a second hit, both of which are identically distributed

as the time to a first hit whose cf is given by (4), and therefore, our

result follows lmnediately. Although the result is obvious, it is still

instructive to derive it by several different techmiques.

B. The Semi-Markcv Process Technique

In this technique, Markov chain theory is used to establish the plf

of N, the round number on which the contest terminates. This is, of

course, the right-hand column of (14) and one might wonder Vhy It would be

advantageous to use a relatively complicated technique such as this to

establish what appears to be rather obvious. The answer is two-fold:

(1) to demonstrate the technique, and

(2) when the state space is more complicated than in our example,

the derivation can become very difficult as there will be so

many branches in the outcome tree that keeping track of all

the paths through it may become nearly impossible. The

Markov chain does this automatically. 'I

The first step is to establish the state space, which in our case,

has three states: (1) not hit (T), (2) hit but not killed (HR), i.e.,

one hit only, and finally, (3) hit and killed, or simply killed (K),

i.e., a second hit.

We notice that in the language of Markov chains, two states are

transient (TI, T) and one (K) is absorbing (once entered, it may

-10-



never be left). Next, the initial state probability vector (I) and the

transition probability matrix on the state space (8) are determined. In

ar= ewxple we have

I - (0,0,1)

and

K NI o o
- 1 0 0

0 p q

which are now partitioned as follows:

1 (o,:o,l)= (o,M)

and

0 (1

0; p q

The raw vector M excludes the absorbing state K. The sub-matrix P

contains all the transition probabilities for remaining in non-absorbing

* states and the column vector T contains all the transition probabilities

for going from a transient state (Ir- or Rl) to the absorbing state K.

From elementary Markov theory we have that PN(n), the probability of a

4 •-. . . .. . . - . .... ..: .:: ••: • - U-",' ," _



kil an the nth rmnd fired Is

-(n -. M"' .T ('7)

First, determine pU- by matrix multiplication:

p q

2

q 0

\ pq 1  q )

q-3 0

3,( e ( 3

n- n-)

The general result for FP is easily p~roven by induction. Continuing,

qn-1 0

and

S -12-

,ht -r -. -o,- - -..-o.. A.•



p1(n - A- Til (n l)pqn-2 qn-l) P

-(n 1)Pq7-2  - pqle

which is, of course, the general term of the pnf of N and corresponds

to the general term of the right-hand column of (14) above in A. From

here, the development follows A above precisely and will not be

repeated. The reason that this is called a semi-Markov process is because

the time between events is a RV.

Before turning to the next topic, we should note that the state

space may be much larger. There may be man transient states, thus, P,

M and T may be mch larger. In fact, there may be quite a few absorbing

states. For example, it might be possible to be killed on the first hit, or

not killed on the first hit and killed on the second hit (as above). The

point is, that this technique provides a convenient and orderly way to

expand the state space.

C. Renewal Theory Integral Equations Technique

It will be helpful in looking at the techniques to be described

in what follows, to establish first sime notation and concepts from

renewal theory.

Let N(t) be the number of firings up to time t. Clearly, for

every fixed t, this is a discrete RV. The situation may be depicted

graphically by a possible realization as shown in Figure 2. This process

is called a terminating semi-Markov renewal process. Most of the renewal

! -13-
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theory literature cancerne itself with nonterminating procesuos, but we may

still profitably consider this awproach.

In the ordinary nonterminating renewal process, one Important result

ia that E[N(t)] can be expressed as a simple integral equation. In our

case, however, we are more interested in the function h(t) which can

also, in a similar manner, be derived from a series of integral equations in

sequential order. In order to do this we define three functions, as

follows.

First, let n - - Xi be the RV, tiie to th • , with

pdf ?*(t), then,

0
hn(t)dt - P(t < T < t+ dt. o hits in n trials)

- P~t < Tn < t+dt IO hits in n trials]

P(O hits in n trials]

. ?'•(t)qn dt, n - 1,2,..., (18)

b;(t)dt - PL' < < t+ dt I hit in n trials]

P(t<Tn <t+dtl1 hit in n trials]

P(1 hit in n trials]

- fr(t)( n )pqn- 1 dt, n = 1,2,..., (19)

where the factor ( n ) is necessary because the hit may occur on any

round fired, and

* -15-
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hn(t) P[t < T<t+dt, 1 hit in n-1 trials and

2 nd hit on the nth trial]

P[t < T < t+dt 1 hit in n-1 trials and
n

2nd nth2 hit an the n trial]

P[i hit in n-1 trials and 2 nd hit on the nth trial]

If (t n qnl2 dt, n -2,3,...,20)

Now, notice that if we consider the sequence n - 1,2,..., and consider

the sum on n that (18) and (19) are not proper density functions, but that

(20) is (it is just the mixture defined in (14)). What we are doing here is

looking at the ensemble of all possible realizations of N(t), such as

Figure 2, and at every t selecting out all those which have had an

event occur in (t , t+ dt). We then partition all these realizations into

three subsets:

(i) those with no hits,

(2) those with only one hit, and

(3) those which have terminated.

We are, of course, looking at subsets of (i), (2), and (3) where N - n

for all possible values of N. With this understanding of thi nature of

h (t), hl(t), and hn(t) we may new write three interconnected integral

equation3. For example,

'jh (t )dt adt q f f(x) h0  (t -x)dxp

n -16-



which states that 0 • no hits had been scored In n- 1 rounda, the last of

which was fired at time t- x, then if we fire another round at t it

muot fail, in order fo'" the system to be in the state of having just fired

th
a round which vas the n one, and no hits have been made yet. The inte-

gral is just the convolution of hN.lt) with f(t). If we now define

h°(t)- Z O(t)
n-l

qf L
- f(x) n -L(t x)dx

0 h-

rt
- qf (t) + .J f(x) ho(t - x)dx . (21)

Note that for n1 1 we merely have one selection from f(t), multiplied

by the probability of a failure, in order to get hi(t) (see Equation (18)).

In a similar manner,

h~n(t)dt

ot ot
- dt p f (x) .- (t- x)dx + dt q f (x) hnl (t- x)dx ,

0 0ý O -

where we have accounted for two mutually exclusive ways to get to the state

of having fired one round. These are, no successful rounds in n- 1

th
* firings and a hit on the n h, and one hit somewhere in the first n- 1

rounds and no hit on the nth round. Summing as before,

-17-
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h1 (t)

ot ot
rp(t) + p f(x) h°(t.=)d+ qJ f(Z)h 1 (t- x)dx (22)

where we note that hbo(t) - 0; and tinally,

hn(t)dt - dtp f(x) .(t- x)dx ,

which, when sued gives,

h(t) - p f f(x) h1 (t -x)dx • (a•)

Equations (21), (22) and (23) my be solved in that order, as they depend on

each other in that order. Taking the characteristic function of both aides

of (21) and denoting the ef of ho(t) by *°(u),

00(u) - q (u) + qV(u) 0°(u) ,

which, when solved for 40 (u) in

a= 9( u) (

Sq(u) " - (u)(4)

Now, taking the cf of (22) and describing the ef of hl(t) as 0(u)p

/ •' ~ ~(u) P 9q(u) P•(u) +°u) q 9(u) Gl(u),

•, -18-
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substituting 09(u) from (24) and Solvng for g1(u), one obtans:

1(u) - u (25)

[1 -q (u)]

Finally, taking the cf of both sides of (23)

ONu) -p•C~u) 01(u)

and substituting 0(u) from (25) into this,

ONu) ID V,(u) (26)q Cu)

which again is the same as (16), as it should be.

The advantajge of this technique is that, in spite of the lengthy

exposition given above, it is often the simplest and fastest way to a

given desired result. Also, note that we have only used Equations (18),

(19) and (20) for definitions. We could have proceeded directly to the

solution with (20), as it is just the mixture solution. Also, we can use

Equations (24) and (25) (or, (18) Lnd (29)) to get additional information

on the process. These have p-ysical weanings such &a: the inversion of

"(24) will give the (improper) density function of the time to zero hits,

t and (25) gives the pdf of the time to one hit. These additional rela-

tious may also be obtained by the mixture technique, but each would

require a separate, independent calculation, in exactly the same manner

as described for h(t) in Section A above.

* -19-
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D. Renewal Theory Integro-Differential-Difference Equawtio

Techniques

For the renewal process described in Section C above, the integro-

differential-difference technique may be applied if the interfiring times

have a negative exponential pdf (ned). The reason for this is that the

ned RV has no memory and the process is reduced to a terminating semi-

Narkov renewal process as a result.

However, if the supplementary variable technique (see, Cox, 1955 or

Keilson and Kooharian, 1960) is applied, the restriction to ned IFT's

is removed and general IFT's may be considered at the cost of some

complication in the mathematics. In this fas ion, the process goes from

non-Jarkov to semi-Niarkov. This procedure is widely used in the literature

pertaining to Stochastic Duels, but much ambiguity, many notational diffi-

culties and, in come cases, unnecessary complications are widespread.

Consequently, we shall illustrate the method for our example in some detail,

in the hope that the reader will find the literature more readily

accessible.

As before, the process may be considered graphically as shown in

Figure 3. The situation depicted there is for the case where the process

is observed at some arbitrary time, t, and its state is noted. In this

case, the state is that N(t) - n and there have been no hits. The time

Ssince the last firing is a EV and is in the interval (t-y,t-y+ dy).

The corresponding new random variable Tn, is the supplementary variable

and in renewal theory terms is the backward recurrence time (see, Cox and

Miller, 1965, p. 339). The other two cases are:

(1) the same as shown in Figure 3, except that one hit has occured

-20-
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on one of the n firings (possibly, even on the n ftiring),

and

(2) at the time of observation, the process has terminated, i.e.,

the second hit occurred on the nth round.

In this latter case, the supplementary variable i_ unnecessary since no

further events can take place. The supplementary variable is subscripted

with n as it is a function of n, but its realization is not sub-

scripted, since we wish to look backwards the same distance y for all

Tn's.

.e properties of the supplementary variable, Yn, and its rela-

tionships to the MrL, X (which is most important), are well known and may

be summarized as follows:

(a) Yn is measured to the left from t and fy (y ;t)dy is then

probability that the nth firing lies in the interval

(t -y, t - y dy);

(b) f (yt) - h0-01(t- c)F(,), 0 < y <t., where o"t

is the already familiar pdf of the renewal process for

either zero hits or one prior hit, with N(t) - n;

(c) P[y<X~ 1 <y•+ • x~ 1 ><] mP[y<X <y yIx >y]
<. yXýl>y - P(•) < X <, yIX>y

X(y)dy fX(y)

vhich implies that the probability of a firing in the interval
,'W

(t,t+ A) -X(y)A+ o(A), where lir m - ;

. 8 -22-



-f-• x(•)d•(d) fX(y) My)6 e 0 and

(e) from (c) and (d) above, F(y) -e

With this background, we now define a function which is the probability

that, if the process is observed at some arbitrary time t, with n

firings having occurred, and no hits have been made, and that the last

firing was between y and y- dy time units earlier.

H°(t, y)d•- P[N(t)n, y < Yn < y-dy]

![T < t s Y yo-y; 0< y< t.,

S0 y ?ty>t>O, n>O

Ho(t ,y)dy - 5(y - t) Fc(y) ; yt > . 27
0 Xi

The first form of (27) is to be interpreted as a joint probability mass

function (improper) on the number of rounds fired vith no hits occurring

(N°(t)), and a probability density function on the time since the last

firing, Yn, with a parameter t. The second (equivalent) form is inter-

preted as a joint distribution function (lWroper) on T0, the time of
th;

firing the n h round with no hits and a pdf on Yn, with a parameter

n. We also note that when n - O, that y must equal t, which

accounts for the Dirac delta function 8(y - t).

In an exactly similar fashion we have,

!-2i3



Hn(ty)dy - P[Nl(t)-ny<Y <y-dy]
n

0[" y>t, n>l (.8

where N1(t) is the IRV number of rounds fired with one hit somewhere,

and where T is the RV time of firing of the nth round with one hit

in one of the n rounds fired. Now, the case where the process has

terminated is described by

H%(t) - P[N(t)-n, 2 nd hit on the nth round]

-P[T < t,process terminated); t > O, n>2 . (29)

In this case, the first form is a proper pmf on N with parameter t and

the second form iE a proper df on Tn where n is a parameter.

The fact that certain of the mass and density functions above are

improper will be seen as we derive them. As in Section C, above, this

occurs whenever we consider a subset of the sample space which is not just

the terminated subset. The reason for this is not easy to see, but it is

related to the fact that all realizations terminate with probability one.

With this background we may now derive the integro-differential-

difference equations which govern the process. If we ask about the state

at some forward time, t+ L, note that this also simultaneously extends

y to y+ A.

Now, from elementary calculus and referring to Figure 4, if we ask

-24-i - .•.



p0

Hn(t+A, y+A)

H°( t y) H0( ,y +8 )
AY

FIGURE 4

about being in stete: n firings and no hits at t+A. we hav.

H•(t + A,y + )

Also, this same probability is that we are in the state: n firings and

no hits at t, and no firing occurs in the interval (t, t+A), i.e.,

H°(t, y)(l - X(y)A]. Equating these two statements, we have,

,"~H0 H(t, y)[- k(1 )

#n

(t =25 + t , •

F -25-



Rearranging terms, dividing through by A, and taking the limit as A -4 0

gives,

Note that, although H:(t, y) is quite different in form from Hn(t, y)

for n > 0, it still satisfies (30).

In a precisely similar manner, we can immediately write down for the

state: n firings and. one hit,

S+ 6+ y) (t,) -y ; n-l,2,..., 0 <y<t• ()

For the situation of n firings and two hits (process terminated), there

are two mutually exclusive posaibilities when we go to t+ A from t.

Either the proces3 had terminwAted before t (and therefore, remains

terminated), or it had not terminated earlier and does terminate in

(t , t+ A), thwu,

H (t + A) Hn(t) + H.(t y) X(y)Apdy ;

n>2, t>O 0

Rearranging terms, dividing through by A and taking the limit as A -* 0,

W lt) h(t W p Hrt -~1 (t , y) X(y)dy

n>2,t>0 . (32)n 1



Two boundary conditions mast now be accounted for, as follon. Define

h(t)dt - P[t < T <t+dt (33)

from which

ft
(t - Jot H. 1 (t,y)x(y)Aqd, , (d)

r where the right-band side of (34) is the probability of being, at time tp

in state n- 1 firings, with all failures and time y since the last

firing and a firing in the interval (t, t+ A) with a failure at that

firing, integrated over all permissible values of y. From (34)

hootq t 0- (t' y) ).(y)dy, n > 1 (35)

Also,

,,(t) - o (3)
0

since H0.(t, Y) is undefined. Equivalently, we take the time of firing

the zeroeth round to be at t a 0.

By similar reasoning, we obtain

bh(t)

. q J Hl(t, y) X(y)dy + p .0(t, y) X(y)dy, n > 1, (37)
0 J0

and

h ao(t) 0 , (3)

I-in ' -27-
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since there is no way to have a hit without a firing. The two terms an the

right-hand side of (37) account for the two ways to get to one hit at

ezactly time t, I.e., no prior hits and get a hit, and secondlyp have a

prior hit and get a miss at t.

We now define the following functions

H (t)y

H1(tY) - Z H(ty)
n-O

h(t) - M h(t) (39)
nue n

n-.h° (t) . E h°(t)n-i
1 10hlt W hn;(t)

n-,1

Note that upon suming on n,

1P (t ,y)dv - P[T 0 < t #y < T<y -dyj

where T is the RV, time to a firing (for M n) with no hits and Y

is the RV, time since last firing (for saty n). Similarly, Hl(ty)

involves T1 the RV, time to a firing (for any n) with one prior hit.

Another important point is that

i-28
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l hi Ho(t,y)dt - P[To < t,,0 < Y < 0-dy]
y-'O

-P(T<To <t+dt)

- e(-t)dt + b°(t)dt , (4o)

from Equations (27) and (39). This is because the definition of Io(t, y)

includes the case of n a 0 and h(t) does not. However,

lim Hl(t. y) - l h(t) .(4.1)

Now, upon rming oan n and applying definitions (39) to Equations (30),

(31), (32), (35) and (37),

( + + x )(Y) )H°(tPY) - 0, o< <t, (42)

( + + X(Y) )H(t) , 0 0 , 0 < , (43)

h(t) ap f H1(t,,y) X4(y)dy Ptdo O (44)
0

h0 (t) - q f (t, y) ((y)dy , t> 0, (45)
0

h(t qf H1 ~p))kyd+pI(t ,y) X(y)dy P+ 0 (6

0 J0r•.and fins.12,v the initial condition from (27),,

H*(O, Y) -5(y) .(47)

-29-
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This comen sbout because, when t 0 0, y - 0 and F(O) -1.

Before proceeding, it must be noted that1 in moat of the literature,

the preceding step is not a simple sumation on n, but rether, the form-

ation of a geometric transformation (sometime referred to as a probability

generating function or Z transform) first. This is done, by say,

1n0z~ %(t., y) where a is the transform variable. In almost all cases,

this step is unnecessary and yields nothing, since authors usually set

Z - 1, and we are right where we are now. The only reason for using the Z

transform technique at this point is if one wishes to discover some of the

properties of the pmf an N(t). This may be done in the usual fashion by

taking appropriate derivatives of the Z transform with respect to z.

The next step is to convert all functions to their cbaracterýstic

functions, in the variable t, by the appropriate transformation. We

define:

H 1(ty) - ! 1 (u,y)

h(t) N(u) (48)

ho(t) (u)

h 1 (t) - •(u)

In peroaming thcte transforms, we note that the

ef d•IHo(t,)) " -(u,¥)- 10(O,¥)

Proceeding to operate on Equations (42) thresh (46) and usina (47),

-30-



( - + M Y) TN)) Yu, ) 8( , y >), (o>)

*(u) + p Y fo Y(u' )y > ( (s0)

f(u !uy)X (Y)dy (51)Jo"
O1(u) q Y (u, Y ) X(y)dy (5)

0
01(u) -q T'(up ¥) X,(y)d

+ P I To(u' j ) X(Y)dy 5•

We shall lustrate how the right-hand side (rhs) of the last three equoA-

tions come about by looking at the derivation of the rhs of (51).

rhes P p f eu dt ft H 1(t ay) Xyd
Jo 0

r p f dt t Hl(t,,y)ut >(,)
o J0

Now, since y < t, the integration above is over the shaded region

depicted in Figure 5, first in the y direction and then in the t

direction. Revereing the order of integration we have

rhS m p X (y)d•f UUt• (t y)dt

S-31-
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1' t

(a) (b)

FI•JE 5

Integrating to Obtain Equation (51)

and since iA(ty) - 0 for t <-y the inner integral is 1 (u,Y) and

ve have the desired result.

The problem now is to solve the simultaneous set of equations (1&9)

through (53). Equation (49) is a linear, nonhmgeneoua differential equa-

tion in the variable y. This my be solved in the usual way by getting the

general solution to the hlcugeneoms equation (rhs - o) and adding a par-

ticular solution for the entire equation. Thus, setting ris - 0,

) - u-Xy) , or (54a)

ain T"(u, Y)
a- M u-X(y) , or (54b)

:-32-



[y
lny(u ,V) iuy + C (54o)

0
I Y A(S)dS 5d

or Y0(u Y) = x *iwI -(
6

where K end a are aw constants, and yo is the general solution toI

the homogeneus equation.

Now, let us try the following particular solution, Yo,
p

Y0 (Uy)-Uye'� -$Y3 ,( §)d§ (5

where U(y) is the unit step function, In (49), and ve see at once that it

is satisfied. Therefore,

YO(uy) - yo, +o = (U(y) + Kleix foX.)l 0 (56)

We notice, from (40) and (148), that if we let y -. 0,

YT(o) -w + *°(u)

which immediately gives us that X = 0°(u). Thgz,

-°(u, ) (UMY) + 9(u)e x()) (57)

The solution to (50) follow Imediately, since there is ,io complicating

rhs and we may write

is

. -..,
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iy(uy) 41)- i(u) (• (58)

No, substituting (57) into (5),

ry i- f y &.)d t

0o(u) - q [U(y) + tO(u)le] " 0 X)(y)dy (59)

Remembering that U(y) - 1 fcr y > O, the integral on the rho is just

the cf of the pdf of X. Therefore, (59) is

0(u) - q(r + e*(u)] 4(u) ,

from which

4q(u) (60)• °u) 1 -q~ku)

Substituting (60) into (57)

! 0 (u,y) L U(y) + -q qL(u) J (61)

Substituting Equations (58) and (61) into (53)

: 4.

-34-
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1 (u)- q 1(u) e

0

+ [U(Y) + Ieu ](y)dy

or

01(u) - q.1(u) 4(u)+ p(u) 1 + -(u

or

.(u)u ja (62)

which, for (58)gives

- •- $uo• ((6)T' (u, Y) . *(u) . •~ (9d (63)

i - q qp(u)T2

Finally, (63) is substituted Into (51)

*(u) - 2 q(u) Jo eUV"o X(t)dp
(1 - qq(u)] 0)

or

D(u) J¶y (64)S4 , ,• - C u ) p

•L ~-35- !



which is the desired result and checks vith all previous derivations.

At this point, one ight questiot the need to use such an involved

and complicated method to get the result in Equation (64) when other

methods are simpler. The answer to this is that if it is the only result

desired, then there is no advantage. However, it should be noted that

the reward for the additional effort is, as it should be, that additional

information is available, namely, ore can invert Equations (60), (61), (62),

and (63) to get probability functions on the distribution of times for

zero hits, one hit, joint times for zero hits and time since last hit, and

one hit and time since last hit. Also, as previously noted, if the

geometric transform is used, information on the number of rounds fired can

be obtained.

I-
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APPMIXfl

SOME USEM •ULTS 1N TM THM OY OF CHMCERMISTIC

FUCTIONS

0. Introduction
Ii.

This appendix contains saw theareus and other results from the

theory of characteristic functions which awe useful in derivations or

applications in the Theory ef Stochastic Duels. All of these results,

except Theorem (A15), are from a compilation in bibliagraphic item A6.

The proof of Theorm (A15) in given herein.

We use qX(u) to denote the characteristic function of the pdf

f (t). Except for the Parseval theorems, the results are for positive

RV's only. The notations fL and U are the same as those given

earlier in this work.

1. Some Parseval Theorems

Three useful versions of Parseval's Theorem are given below.

fA(t) fB(tdO) = . (-u) VB(u)du ()

e, )d ,(=d A

f e~fA(t) fB(t~d 4 f A(u~w v ()dw ,(

f, •lut fA(t) fB(t) tc(t)dt

-. A(u-i)( 4B(v-y)

•' ~A-1



2. Proverties of Characteristic Functions of Pbsitive

eadmc Variables

In what follows, only positive rendon variables are caos14uesd,

i.e., pdf'u such that

-- I(A4&)t(t) =o, t <

and

J f(t)dt 1 (Ab)
0

with characteristic function and Inverse

l t
F(u) = *ut f(t)dt
(u real, (A5)

f(t)- a 1 0 4-it(U)h,

2T -'tqw u

respectively.

The properties of interest follow.

10(o) = i (A6)

19(u) I l I. Mginary UO > (0?

t i This implies no singularities in the upper half of the complex plane.

A-2



Iy-U)I, ~MOSIUM u < 0 (AB)

This Implies no singularities in the lower half of the complex plane.

V9(u)i j7 f(t) a differentiable function (A9)
of bouned variation. oaginary
u > 0, k - positive constant.

This Implies that 9(,() diminishes as 1/A in the upper half-plane vhere

R is the radius of a semicireular path of Integation in the conmplex

plane.

kI~(-u)f <- (t) a differentiable function (A10)
lul of bounded variation. Imaginary

u < 0, k - positive constant.

This implies that 9(-u) diminishes as 1/ In the lover half-plwme, R

the same as in (A9).

I(U - W) I , (All)
I agizary v<o

This implies no singularities In the upper half of the complex u. plane

and the lower half of the ccmplex w plane.

kIy(u- v)l < iu----l' f(t) a differentiable function (A12)
lu of bounded variation. ginary

>o, ginary v<0, and
k - positive constant.

This Implies that P(u - v) diminishes as 1/B In the upper half of the

u plane and In the lower half of the v plane. R, as above.

I) A-3



3.~ Thmeor kiMvLviJg Chsmrateristic Ponctions, of Pbsitive
Randcm Variables

We bave that

f1tu t 41F + (vu)(l~e w - (AlVaf 1 Vd w A3

Note that for u - O, this also Lives an expression for the distribution

function of a random variable in term of characteristic functions. Also,

Note that for u - O, this provides an expression for the conpiementary

distribution function in terms of cbaracteristic functions.

The characteristic function of the distribution function is given

Proof: nttegrating by parts,

tf •*ut f f(,)dt dt

ejut uutf(OdII f f(t)dt
i= -- t" o o iu

0 t
mut

-1134
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Now, to explor the first term, let u be mnalytiLcal2.y caitinued into the

CComple plane. Miua, U X + lyi XSY real.

lit tt

lxrdeterminate, y Oj.anyx:

Q.E.D.

Contiming our listing of results.,

" "eb t f (1dl dt IL~U) 1(Ai.6)
0 (jt

This tIs the cbea~cteriatic function or the comiplemntaa'y distribution

function.

F 11 A(-U)EfB(u) 1
f t) f'I1)d& dt * -j_- du p (A18)
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L fA ~d)(dt

rfA (t__it

W _ _ _ _ _ _ _ _ _ d u -

(: vdu

.4)f~v (A23.)

____ ___ ___ ___ du Fa (A22)
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W11b YU

dui (A23)
riT1L fj * f u

Af (t fB(b )dt

t 41

*-Sub (-)(()-

u U

f A t(t)( f r3d ) Jo f [W fD(P)dp] dii dt
- ~ ~ V ;; (:9(-u -v) I V)(() - 11e dT

9A(u w)[93 (v) -JdV d (A26)

0 A-7



Oar flinal result Is that for wW Integral of the tarm

9A q,(-U) %(u)

where there my be a• n m.er of of's of positive RV's In the Integrand,

loas ng as at least one ban a positive arpment and at least one bwj a

negative agu•mnt and all we divded by up then

PEA]) 2 Re Itegrand (A27)

where C Is e&W path iu the lower right half of the complex u plane,

which starts at u - 0 and terminates at + -. The path =st remain on

the real u azis or be between the real u sued and the nearest singular-

ity in the lower half plane. 'Exaples are shown In Figure Al.

L/ u
JC

-. . . . ---- - -

PIWURE Al
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PART II

ANNOTATED BIBLIOGRAPHY OF

RESEARCH PAPERS

This part of the work contains a comprehensive, fully annotated

bibliography of all research results known to the author. An exhauct-

ive search of the free-world literature has been made. Some manuscripts

which have never been published in the open literature are also

included.

A few papers included deal primarily with many- versus- mawy

situations, but contain some material on one- versus- one duels. In

this case, only the latter is annotated and appears herein.

The format is as follows:

(1) Each paper has an alpha-numeric designation consisting of

the first one (two if necessary) letters of all authors

last names, plus a number.

The papers are arranged alphabetically by first author, starting with

sole authorship and then dual authorship, and so on. The number indi-

cates the chronological sequence of all papers by a specified author,

or set of authors. The chronology is based on the date of the first

citation given for each entry in the bibliography. There may be more

than one citation given, as it is cuscomary to produce first a company

or university, etc.*, version and then an open literature publication.

The latter is always the first citation. The reason all versions are

given is that a reader who may have access to one version, may rest



assured that there is no difference in content between versions, except

as noted.

Next, if there are both fundamental marksman (FM) and

fundamental duel (FD) results, the FM part is given first and the

FD portion is next. The format for each part is the same, and goes

as follows:

(1) Identified as FM or FT

(2) For each model considered under FM or FD

(a) identified as CRIFT or FIFT, or mixed

(b) all modifications, e.g., ammunition limitations, etc.

(5) General solutions which are given

(4) Particular examples with details

Finally, at the bottom left-hand side, a listing of all the prin-

cipal techniques of derivation used is given.

'x ; /"... ..... ..... .......- ... .... -il• •l-.. .



The fundamental marksman (FI4) problem is defined as a marksman

firing at a passive target. He fires at certain intervals and either hits

or misses on each round. The trials cease on the first hit. The hit

rrobability is constant from round to round. The time between rounds may

be a continuous RV or a constant. He starts with an unloaded weapon,

has unlimited time to hit the target and has unlimited ammunition.

The f•udamental duel (FD) pits 2 marksmen, as defined above,

against each other. The duel terminates when one hits the other, or both

are hit simultaneously. They start at the same time and, in general, have

different kill probabilities and different interfiring times.

NOTATION AND ABBREVIATIONS

CRIFT - continuous random interfiring times

cf - characteristic function f -+ eit f(t)dt

CRV - continuous random variable

df - distribution function

DDC - defense documentatica center (documents may be ordervd from
this center using numbers as shown in bibliogvaphy)

Erlang (k) - a RV with pdf given by

0--0, e>-ehere

E[X] - expectation of X
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FD - fundamental duel

FIFT - fixed interfiring times

FM - fundamental marksman

gt - geometric transform - . f(n)zn also sometimes called the
z transform and if f(n) are elements of a pmf, sometimes
called a probability generating function

h(t) - pdf of RV, marksman's time to a kill

H(t) - df of RV, marksman's time to a kill

H -the event of a hit

H - the event of no hit

IFT - interfiring times

iid - independent, identically distributed

L T - Laplace transform • 0 e'st f(t)dt

ugf - moment generating function (same as the Laplace transform
with a replaced by -s)

HUE maximu= likelihood estimate

ned - negative exronential pdf, given by

fXx() - r er x > 0

U 0 i lelsehhereot e

N - number of rounds fired; may or nay not be a RV (sometimes

pdo - probability density functicn, denoted by fx(x)

used 
as a gene-ral 

constantp 

as noted 
In text)pm1  

- probability mass function., denote4 by pX(x)

pgf - probability generating function (or, sometimes called
geometric transform or z transform)

P[A- probability A wins the duel

Li



SP[B] - probability B wins the duel

P[AB] - probability neither A nor B wins the duel, consequently,
a draw

r - rate of fire or value of RV, R

P - RV, nmiber of hits to a kill (for a situation where more
than one hit is required)

RV - raz~om variable

T - RV, marksman's time to a hit (kill) - may be subscripted as

appropriate

TOF - time-of-flight (may be a RV)

V[X] - variance of X

X - interfiring time RV
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Al. ANCUR, C.J., Jr., "Stochastic Duals With Limited Aimnition Supply,"
Operations Research, Vol. 12, No. 1, Jan.-Feb., I96h& pp. 38-50.
(Also, System Development Corporation, Santa Nonica, CA., Document
SP-1017/001/00, 23 April, 1963, 24 pp., DDC No. AD-40 104.)

FD - CRIFT - (1) Random ammunition supply

- (2) Fixed amunition supply

- (3) Special case; same as (1) above, except duel terminates
when either side runs out of miznnition before a kill

General Solutions: P(A], P[B], P[AB] (both sides run out of
aununition, (1) and (2); either side runs out of
aunition, (3))

Examples: (1) and (2) only

Distribution of Nunber of Rounds

A B IFT dIs

Geometric Geometric ned
Poisson Geometric ned
Binomial Geometric ned
Geometric Geometric Erlang (2)
Fixed Fixed ned

Curves comparing this duel with FD

mixture technique
characteristic functions

A2. ANCKER, C.J., Jr., "Stochastic Duels of Limited Time-DuIrationj," CORS
Journal (Canada), Vol. 4, zo. 2, July, 1966, pp. 69-81.

(Also, System Development Corporation, Santa Monica, CA., Document
SP-1017/005/o, 30 • •rch, 1964, 24 pp., DDC No. AD-436 529.)

Length of Duel

Fl- (1) CRIT (a) Continuous random time limitation
(b) Fixed time limitation

"- (2) FIFT (a) Continuous random time limitation
(b) Fixed time limitation

B-6
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A2. (cont'd)

General Solutions: P[AJ, P[B], P(AB] (both sides run out of time
or kill sizmitaneously)

Examples:

Distribution of
A's IFT B's IFT Time Limitation

ned ned ned
Erlang (2) Erlang (2) ned
ned ned fixed
E•lang (2) Erlang (2) fixed
fixed fixed ned
fixed fixed fixed

Curves comparing this duel with FD

mixture technique
characteristic functions
number theory

A3. ANCKER, C.J. Jr., "Stochastic Duels With Time-of-Flight Included,"

OPSEARCH (India), Vol. 3, No. 2, 1966, pp. 71-912.

Errata OPSEARCH (India), Vol. .3, No. 3, 1966, p. 155.

(Also, System Development Corporation, Santa Mcnica, CA., Document
SP-1017/009/00, 19 May, 1966, 28 pp.)

3 Procedures Considered:

(1) No Delay - firing proceeds as rapidly as possible, no delay to
observe effect

(2) Delay - each round is allowed to hit before next round is
prepared and fired

(3) Mixed - one side delays, the other has no delay

SFM-CRIFT- (1) No Delay - random TOF
- fixed TOF

. (2) Delay - randomTOF
- fixed TOF

SFM- FIFT - No Delay - fixed TOF

General Solutions: (pdf time to fire killing round, pdf time to
kill1)

B- 7
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A3. (cont'd)

Examples:

Procedure "T pdf TOY C ,f

No Delay ned ned
No Delay ned constant (fixed)
Delay ned ned

FD- CRIFT- (1) No Delay - random TOP

- fixed TOF

- () Delay - random TOF

(3) Mixed - A fixed TOF (delay), B zero TOF

- Both fixed, A delay, B no delay

FD-FIFT- (1) No Delay fixed TOF

-(2) Delay fixed TOY

General Solution: P[A], P[B], P[AB] (both killed)

ExLmples:

A's A's P's B's
Procedure IFT pdf TOe ed IFT f TOFned

No Delay ned ned ned ned
No Delay ned f Ixed ned fixed

fixed
No Delay (c X B' FT) fixed fixed fixed

Delay ned ned ned ned
A Delay ned fixed nof..d zero
A Delay ned fixed ned fixed

B no Delay

Special Case:

FD- CRIFT - no delay - TOF varies linearly

General Solution: P[A], P[B] P[AB]

E.xample:

A's IFT pdf B's IFT

ned ned

mixture technique
characteristic functions
number theory
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A4. A•CXEr., C.J., Jr., "Stochastic Duels With Round-Dependent Hit
Probabilities," Naval Research Logistices %arterly, Vol. 22, No. 3,
Sept,, 1975r, pp. 575-583.

(Also, 16riversity of Southern California, Los Angeles, CA., ISE

Department Technical Report TR 74-3, 2 August, 1974, 16 pp.)

FM- CRIFT - Round dependent hit probabilities

General Solution: pdf time to a kill

FD - CRIFT - Round dependent hit probabilities

General Solution: P[A] P(B]

Examples:

A's Hit
Probability B'e Hit

A' a UFT If on J- th Round B's IFT pdf Probability

(.)'A
ned qj (•- 1 ) A ned fixed

(N, a fixed integer)

Erlang (2 qj A ned fixed

ned qj !A- ned fixed

Curves for last exemple and coparing 1-st with FD

mixture technique
characteristic functions

A5. ANCKER, C.J., Jr., "Stochastic Duels With Bursts," Naval Research
Logistics qgarterly, Vol. 23, No. 4', Dec., 1976, pp. D-TI

(Also, University of Southern California, Los Angeles, CA., ISE
Department Technical Report TR-T3-5p, Nov., 1973, 14 pp.)
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A5. (cont'd)

FD - Mizedj, CRIPT - FlF

General Solutions: P[A], P(B]

Exame: A - FIFT, B - ned ITI

Curves of solution

FM- (1) Bursts of fixed size N (random time between rounds and
random timea between bursts)

- (2) Same as (1) with fixed times between rounds in a burst

General Solutions: pdf time to a kill

FD- A fires burst of fixed size N. Rounds within a burst equally
spaced. Random time between bursts. B is CRIFT, no bursts.

General Solutions : P[A]. P[B]

A B IFT

ned between bursts ned

Solution curves, comparison with FD

mixture technique
characteristic functions

A6@ ANCKER, C.J., Jr., "Theory of Stochastic Duels - Miscellaneous Results,"
"TRASARA TECHNICAL MEMORANDUM 2-77, March, 1978, 39 pp., U.S. Army TRADOC
Systems Analysis Activity, White Sands Missile Range, New Mexico, DDC No.
AO-52158.

FM - Erlang (n) CRIFT

General Solution: pdf and df time to a kil

Sxm e: n il, n Z2, solution curves

FD - Tactical equity (each side fires first IA the time and then FD
stafts)

Geners,1 Solution: P(A)

Exampe Erlang (Z) M.:7T
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A6. (cont'd)

P1)-CRIFT's - tactical equity (except 2-nd firer returns fire
uned lately)

General Solution: P[A]

Example: ned IFT's

FD- CRIFT - initial surprise a CRV

Example: IFT's - ned, surprise pdf - Laplace
- solution curves, P[A]

Sub-Example :

Surprise: (1) pdf - ned

(2) pdf - ned for negative time only

FD- Erlang (n, m) CRIFT's

General Solution: PtA], P(B]

6 problems by Thompson in T.1 kre simplified by using characteristic
functions., viz :

(1) (a) (b) (c) and (2) (a),(b),(c)

1 problem by Thompson in T2 is simplified by using geometric transforms
and characteristic functions, viz: 2 (c)

Some useful results in the Theory of Characteristic Functions ae
listed or derived as follows:

3 Parseval Theorems
T properties of ef's of positive RV's

15 theorems concerning ef's of positive RV's
2 theorems on contour integration in the complex plane for

special integrands are developed. Useful in numerical.. Integration.

mixture technique
characteristic functions
geometric transform

£ B-I1



A&GI. ANCE, C.J., Jr., and GAWARIANM, A.V., "The Distribution of Rounds
Fired in Stochastic Duels," Navil Research Loisties Quarterly
Vol. U, No. 4. Dec., 1964 Pp. 305-32.

(Also, Systems Developnent Corporation, Santa M)nica, CA Document
* SP-017o/004/oo, 4 March, 196%4, 35PP., DDC No. AD-433 764:5

FM- CRIFT)- Random ammunition supply (centains fixed

-FIFT ) Supply case)

General Solutions: P(H), P(H), P(N" n I H)

E[N IH], E[N2 IH],
PPl > no I H, P[N-n In], P[N-n]

Exam~les: Distribution of N
(no. of ra,,nds fired)

(1) Geometric
(2) infinite supply
(3) Finite, fixed supply

FD- (1) CRFT - (a) rando amunition supply
(b) fixed ammnition supply

General Solutions: PEA -n IA], PENA >IP0 IA], P[NA n IAB,

P(NAu-n B s] P[NA n]

KENA IA], EEN2,I A]

Marginal increase in P[A] if ammunition supply is increased.

EXLM les:

A B

pXff of NA I dpint of ND Vpd

(1) Geometric ned Geometric ned

Infinite
S(2) Blionoal ned (no limitation) ned
(3) Fixed (constant) ned Fixed (constant) ned

YD -(2 PUT (a) random aissunition supply
W() fixed anmunition supply
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A&Gl. (cont'd)

General Solutioms: PENA-n A], PEA], P[AB], PENAn lAB],
P(NAn- IB], PENA 1 n]

Marginal increase in PEA] if inmmition supply in Increased.

Examles:

A B

put Of NA tofN

(1) Geometric Gemetric
(2) Infinite supply Infinite supply
(3) Fixed (constant) Fixed (constant)

mixture technique
characteristic functions
number theory

A & G2. ANCKER, C.J., Jr., and GAFARIA, A.V., "The Distribution of the Time-
Duration of Stochastic Duels," Naval Research Logistics Mrterly,
Vol. 12, Nos. 3 & 4, Sept.-Dec., 1965, pp. 275-294.

(Also, system Development Corporation, Santa Monica, CA., Document
SP.llT/Oo7/0o, 1o August, 1964, 29 pp., DDC No. AD-606 169.)

FM- CRIFT (I) random time limitation

SFIT (2) fixed time limitation

General Solutions: P[H], pdf time to bit, pdf time for no
hits, all moments of two preceding pdf's
(special case, no time limit), pdf of total
time to completion

IFT dg - time limit
Erlhn' (2) ned
Fixed ned

i
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A A&G2. (cont'd)

FD- (1) CRIT a)rnomtm limitation
fixed time limitation

-() FIFT (a) random time limitation

(b) fixed time limitation

General Solutions: pdf of TA IA, pdf of TAIAB, all

moments of the preceding pdf's (special
case, no time limit), total time pdf.

Example:

A V? B'a IFT 2ff df- time limit

(1) ned ned ned
(2) Erlang (2) Erlang (2) ned
(3) ned ned fixed

(4) ECrlang (2) Erlang (2) fixed
.) fixed fixed ned

(integer x B's M'T)
(6) fixed fixed fixed

(integer x B's IFT)
(7) fixed fixed none

(infinite time)

mixture technique
characteristic functions

number theory
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A&Wl. ANCIER, C.J., Jr., and W.LLIAN, Trevor, "Some Discrete Processes
in the Theory of Stochastic Duels," Operations Research, Vol. 13,
No. 2, )ar.-Apr., 1965, pp. 202-216.

(Also, System Development Corporation, Santa Monica, CA., Document

SP-IOlTI002/oo, 13 August, 1963, 28 pp., DDC No. AD-42O 51)

YD - (1) FIFT

Gene•al Solutions: P[A], P(B], P[AB]

(1) A's I'T an integral multiple of B's IT
(2) B's IFT an integral =ultiple of A's 7

Solution curves

FD- (2) Equal FFT - probability of a neer mlss is included. A near
miss causes a displacement and the loss of one
firing turn

General Solutions: P[A], PIB]B- P[AB]

Solution curves

mixture procedure
number theory
stochastic difference equations for (2)

II
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Ba 1. BARPOOT, C.B.j, "TeLanchester Attrition Rate Coefficient: Some

Comm ents on Seth Bonder's Paper and a Suggested Alternate Method,"
POratns"9"Research, Vol. 17P No. 5, Sept.-Oct., 1969,

PMH-Markov dependent stateb > 2 - IFT constant but dependent on
• cur• en4t state

t Kill probabilities dependent on current statei Initial conditions may be varied

General Solution: E[T]: in matrix form

Eample: Numerical

rMlrkov chain theory
matrix algebra

Ba 2. B.ARPOOTI, C.B., "lMsrkov Duels.," Ope$rations Research,, Vol. 22,,
No. 2, Mar.-Apr., 1974, pp. 32-3o.

(Also, "Stochastic Duels in Which Each Contestant's Shots Form a
Markov Chain," oR-69, 5-th International Conference on Opera-
tions Research, Venice, Italy, 23-27 June, 1969, ed. by John
Lawrence, Tavistock Publ., London, 1970, pp. 223-234.)

(Also, Mster's Degree Thesis submitte"1 to the Department of
Operationb Research, George Washington University, Washington, D.C.)

(Also, "Stochastic Duels With Markov Dependent Kill Probabilities,"
Center for Naval Analyses Working Paper, Arlington, VA., undated,
48 pp.)

FM- FIFT- Markov dependent states > 2

General Solutions: pmf (number of rounds to a kill or time to
kill); in matrix form E(N), V(N)

FD - FIP - Markov dependent states > 2

General Solutions: P[A], P[B], P[AB) in matrix form

SExa e: Two-state case F74-FIFT result

FD- FIFT- M. kov dependent states > 2. A fires y rounds first
(random initial surprise), pmf(Y) - geometric

General Solutions: P[A], P[B], P[AB] in matrix form

Nu-merical example
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Ba 2. (cont'd)

Mikrkov chain theory
matrix algebra

Ba 3. BAR'ooT,. C.13.,, "Some Anti-Armor k'odelii Used in U. S. )4i.rine Corps
Planning Studies," NCOAG OJA, Arlington, VA-, NATO Confe.rrascep
26-30 Aulgust, 1974,, 1Wiich, Germjany, 19 pp.

FD - IFT - 3b~rkov dependent states > 2

A fires busts of constant length,, with a constant time
betwaen rcimds and a constant time between bursts

B fires with no burst, just constant time between
rounds

Geners.1 Solutiona: P[A], P[B)1, P(AB] in matrix form; asymptotic

approximations to general solutionsI. ~~ Samn as abov'e - out A fires y rotnds first (surprise)

(b) Y a geometric rand~m variable

Genira Sou~Ans:prA3, PLIE) P[AB] in tastrix form; asymptoti

approximations to general solution

PH - CRUT - rkov dependent states > 2

MF' s are ned and dependent on c'rrent state
(dirlerent pbrwaeter for each state)

General Solution: h(t)

FD - CW!P - )brkov dependent stttes > 2

Each dueli^st M ' s are ned and dependtiit on current
state (different parameters for each state)

General Solution: PEA], P[P]; matrix dou.ble Integral and a closed
solution by similarity t~ransformatior

FD - (G1 Mt - Markov dependent states .'2

Each duelist's Ulf's are ned and state dependent:

(1) A has a fixed time to fire first (surprise)
(2) A habs a reazuon sur3pTise time with ned

distribution

B-17



Ba&3 (cont'd)

General Solution: PLA],. P(BJ; matrix double integral. and closed
form by aim"ilaity transformation

Markov chain theory
semi-harkov chain theory
matrix algebra

B-18
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Bh 1. BEHSHYAM, V., "Stochastic Duel With Several Types of Weapons,"
Defence Science Journal (india), Vol. 17, No. Z, April, 1967,

(Also, Defence Science Laboratory Report, Peihi-6, India, 9 pp.)

# (Also, Dh 3, pp. 67-72.)

FM - CRIFT - several weapons firing simultaneously and independently,
each with individual ned IFT's and kill probabilities.

General Solution: h(t)

FD- CRIFT - each side with several (different for each side) weapons,
firing similtaneously and independently. Each weapon with
individual ned IFT's and kill probabilities.

General Solution: P[A], P[B]

-ean and variance of number of rounds of each type
weapon fired to a kill.

differential difference equation technique
z transforms

Bh 3 uses elementary methods (much simpler but cannot get last results
above.

Bh 2. BHASHYAM, N., '"Stochastic Duels With Pattern Firing," Adwncj%
Frontiers in Operational Research, Proceedings of the International
Seminar on Operational Research, New Delhi, India, 7-10 August, 1967,
Ed. by H.S. Subba Rao, N.K. Jaiswal, and A. Ghosal, Hindustani
Publishing Corporation (India), 1969, pP. 151-164.

(Also, Bh 3, pp. 100-114)

FM- CRIFT - two weapons fired alternately, each firing a fixed number
of rounds (different for each weapon) with a different
IFT pdf and a different hit probability.

General Solution: LT h(t)

FlD- CRIFT - each side, two weapons fired alternately, each firing a
fixed number of rounds (different for each weapon) with
a different IFT pdf and a different hit probability

General Solution: LT time to a kill by A
P(A], P[B]
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Bh 2. (cont'd)

Exsmailes :

(a) Each side fires one round each with two weapons and
ned FT's

(b) A has one weapon, one round each
B has two weapons, one round, each

(c) A has two weapons, one round each
B has one weapon, one round each

Numerical example, curvee

Bh 3 - different numerical exagples and curves

supplementary variable technique
differential difference equations
geometric transforms
Laplace transforms

Bh 3. BHASHYAM, N., "Stochastic Duels," Ph.D. Thesis, University of Delhi,
Delhi, India, may, 1969, 186 pp.

Four sections in this thesis have not been published in the open
literature. Only these are annotated here. The other sections
are cross referenced in the appropriate document.

(1) "Stochastic Duels With 0nly Pooled Aiterflring Time Distribution
Knovn," pp. 7T-84.

FD - CR'?T - Probability that either fires next, given either fired
last, is probablistic. Therefore, the sequence of
firings is Markov and independent of times between

rounds. IFT's are different, dependine on who firedlast.

General Solution: LT (1) time to win by A (i.e., during duel)(2) time to win by B (i.c., during duel)

Numerical exampe - curves

differential difference equations

supplementary variables
geometric transform
Laplace transforms

| (2) "Stoehastic Duels With Burst Fire," pp. 87-100
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Bh 3. (cont'd)

FM- CRIFT - Bursts of fixed length fired with CRIFT and with contin-
uous PV between bursts

General Solution: LT h(t)I
FD- CRIFT - Bursts of fixed length fired with CRIFT and with con-

tinuous RV between bursts

General Solution: LT P[A], P[B]

Examples: (1) all times ned, burst length very large
(2) all times ned, A large burst size, B single

round fire (no bursts-

Numerical results - curves

differential difference equations
supplementary variable technique
geometric transform
Laplace transforms

(3) "Stochastic Duels of Limited Time Duration and Finite Ammunition
Supply," pp. 141-153.

FD- CRIFT (ned both sides) - Both fixed ammunition limitation -
time limitation a continuous RV with ned pdf. A
draw occurs if time runs out or both run out of
ammunition

General Solution: P[A), P(BJ, P[AD)

Examples: (1) unlimited time
2 B unlimited aammn.ition - solution curves

(3) B unlimited mminition - unlimited time
(4) both unlimited ammnition

differential difference equations
Laplace transforms

(4) "Stochastic Duels with Repairable Weapons," pp. 153-169.

FM - CRIFT - (a) Fixed limited ammunition
b) ammunition limitation a discrete RV

• I Time to failure of weapon pdf is ned. Repair time
is CRV

General Solution: LT h(t) and time to run out of ammunition

FD- CRIFT - (a) Fixed limited ammunition (both)
(b) Amunition limitation a discrete RV
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Bh 3. (cont'd) 1

Time to failure of veapons are pdf's with ned's.
Repair times are CRy's. Contestant under tire during
repair time.

General Solutions: P(A], P[B], P(AB)

Particular Cases:

FM & FD - (1) A unlimited aminmition; B fixed
ainmition limit

FM & FD - (2) Both unlimited amm~ition

Examples: (1) Unlimited annmition,, IFT's ned
Repair times ned

(2) Unlimited ammunition, IfT's ned
A repair time ned; B failure free

Solution curves

differentiall difference equations
supplementary variable technique
geometric transforms
Laplace trans forms

Bh i4. BHA.SHYAMj N.., "Stochastic Duiels With Single Shot Kill Probability
Varying As A Function of Inter-Firing Time Interval," Defence
Science Laboratory,, Delhi-6, India. Draft - Private Communication,
spring 1970,, 10 pp.
FM - CRIFT - Fixved ammunition limitation

- Kill probability a function of IFT

General Solution: LT h(t)

FD- CRIrr - Fixed ammunition supplies, both sides
- Kill probabilities, functions of IFT's

General Solutions: Integrals of LT P(AJ, P(B), P(AB]

Exml, Infinite sununition supplies
IFT' s are ned
Kill probabilities a negative exponential function
of lIFT's

differential difference equations
geometric tran~sforms
Laplace. transforms
supplementary variable technique
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Bh 5. BHASHIAM, N., "Stochastic Duels With Round Dependent Kill Probaility

and General Inter-Firing Times," Defence Science Laboratory, Delhi-
6, India. Draft - Private Communication, Spring 1970, 15 pp.

FM- CRI1T - Amnunition limitation: (a) fixed, and (b' random
Round-dependent hit probabilities

General Solutions: LT h(t)

FD- CRIFT - Ammunition limitation: (a) fixed, and (b) random
Round-dependent hit probabilities

General Solutions: P(A], P[B], P[AB]; also,

(1) A fixed a=mition limit
B infinite supply

(2) Both have infinite supply

Examples: (1) both fixed ammunition supply, ned IFT's

(solution in terms of unspecified hit probabilities)

(2) both fixed ammmmition supply and both general
Erlang IFT's (solution in terms of unspecified hit
probabilities)

differential difference equations
special discrete transforms
geometric transforms
Laplace transforms
supplementary variable technique

Bh 6. BHASHYAM, N., "Stochastic Duels With Non-Repairable Weapons," Naval

Research Logistics Quarterly, Vol. 17, No. 1, March, 1970, pp. 121-129.

(Also, Defence Science Laboratory Report, Delhi-6, India, undated,
13 pp.)

(Also, Bb 3, pp. 169-181.)

FM- CRIFT (ned only) - Limited ammunition, failure prone weapons with
,A limited replacement stock (failure times are
ned)

General Solutions: LT h(t)

-a LT time-to-failure (weapons or ammunition supply)
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Bh 6. (cont'.)

FD- CRIFT (ned only) - Limited anmmition, failure prone weapons with
limited replacement stock (failure times are
ned)

General Solutions: P[A], P[B], P[AB]

Also, same with unlimited ummmition and replace-
ment stock a discrete RV

Examples: (1) both unlimited ammunition, A limited fixed weapon

supply

•umerical illustration with curves

(2) from Bh 3 - both unlimited ammmition, both
geometrically distributed number of ocapons

differential difference technique
Laplace trans forms

Bh 7. BHASHYAM, N., "Stochastic Duels With Lethal Dose," Naval Research
Logistics %iEat.erl', Vol. 17, No. 3, Sept., 1970, pp. 57-I5.

(Also, Bh 3, pp. 114-125.)

FM- CRIFT - Multiple hits to a kill (P)

(a) fixed R
(b) R a discrete RV

General Solution: LT h(t)

FD-CRIFT - Ikatiple hits to & k ill (R)

(a) fixed B
(b) R a discrete RV

General Solutions: P[A], P[B]

Examples: (1) '97 ned for both, R fixed for both
Solution curves

(2) 37T ned for both, R a geometric RV for both
Solution curves

geometric transforms
differential difference equations
ILplace transforms

Bh 3 gives a much simpler derivation
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Bh 8. BHASHYAM, N., "Stochastic Duels With Correlated Fire," Metrika,

Vol. 20, No. 1, February, 1973, pp. 17-24.

(Also, Ph 3, Pp. 125-137.)

FM-CRIT - Two weapons with different MiT's and different hit
probabilities. The probability of firing a given weapon
on the next round, given a particular weapon was fired on
the last rorund, is fixed. This leads to a correlation
between sequences of weapons fired.

General Solution: LT h(t)

FD - CRIFT - Two weapons with different IPT's and different hit
probabilities. The probability of firing a given weapon
on the next round, given a particular weapon was fired
cr the last round, is fixed. This leads to a correlation
between sequences of weapons fired.

General Solution: P(A], P(B]

E.camples: ned IFT's for both

differential difference equations
geonetric transforms
Laplace trarsforms
aupplem.'ntary variables

P2
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Bh&Si 1. RHASH•IAM N., and SINGH, N., "Stochastic Duels With Varying Single
Shot K= Probabilities," Operations Research, Vol. 15, No. 2,
Wr.-April, 1967, pp. 233-24. "

(Also, Defence Science laboratory Report, Delhi-6, India, November,
1966, 19 pp.)

FD- CRIFT (ned only) - Fixed amnition limitation

-Kill probability is a function of round
number

General Solution: (1) P[A], P(B], P[AB]

(2) B has infinite amuni.tion supply P[A),
P[B]

(3) A and B have infinite amnmition supplies;
P[iA], PIB] developed separately with1out LT

Examples: (1) fixed kill p'.obabilites; B infinite ammition
supply; also, both infinite ammunition suppiy

(2) p(n) " 1- '1

n+- I '() +- 1

(3) p(n) " (l-an); p'(m)" (l-•m)[CZpP parameters

differential difference equations
special discrete transforms
Laplace transforms

4B
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Bo 1. BONDER, Bethp "The Lanchester Attrition-Rate Coefficie'nt," Operations
Research, Vol. 15, No. 2, 1arch-April, 1967, pp. 21.-232.

F4- FIFT - Markov dependent hit probabilities (dependent on states)
three states

Fixed naber of multiple hits required to kill

General Solution: pmf of N - number of rounds fired to give a
fixed number of hits

E[N]

combinatorial urguments

Bo 2. BONDER, Seth, "The Mean Lanchester Attrition Rate," Operations
Research, Vol. 18, No. 1, Jan.-Feb., 1970, pp. 179-181.

General Solution: If T is RV, time to a kill :W situation
of Bo 1, gives E[T]

elementary probability arguments

B2I
t
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Fi 1. FINL,•, David R.,, "A Theoretical Study or Round-to-Round Correlatio'
In Gunnery," Cornell Aeronautical Laboratory, Inc., Buffalo., New
York, Internal Research Report, WA-86-48•, Nov., 1968, 33 pp.

(Also, Master of Arts Thesis at the American University, 10 May, 1968,
33 pp. Available at University Microfilms, Inc., Ann Arbor, Michigan,
No. M16f7)

FM - CRIFT

r miss

3 states hit, not killed

hit, killed

P[hit] -p, a constant; P[miss) - -p; and P[kilI hit] - , a
constant. However, p may depend on any or all of the
previous rounds fired. General results are derived which dc
not apply directly to FM or FD because more than one
killing round is allowed. However, these results can be
adapted to FM or FD. Very generally, positive correlation
is defined as:

P[hit on i-th round I hits on specified previous rounds]

> P[hit on i-th round I miss on at least one of the
specified previous rounds and miss on all other rounds].

Note: (a) any hit may be a kill
(b) this is not the same as the usual definition of cor-

relation and the results do not apply to ordinary
correlation.

General Solution: Positive correlation decreases kill probability,
compared to the case where all trials are inde-
pendent. For usual definition of correlation,
positive correlation does not necessarily decrease
kill probabill.ty.

Example: no overkills (i.e., first kill terminates process)
dependence is Markov

Results: positively correlated if correlation coefficient > 0;
- idistribution of N, E[N), V[N)

REmple: ef of h(t) for general IFT and E[T], V[T);
also ned

PFD- A is FM as above, B is FM
* Both IFT's ned

General Solution: P[A]

set theory
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Fr 1. FRIEDMAM, Yoram, "A Model for the Determination of Optimal Inter-
firing Times," (unpublished ms. ), Faculty of bniagement, Tel Aviv
University, Tel Aviv, Israel, July, 1976, 8 pp.

FM - Fixed time limit
- Kill probability a monotone non-decreasing function of IT
- IFT is continuous but greater than a certain minimum and at

choice of firer

For a fixed nmber of rounds fired (n) [ < the axiuw
possible ir time limit] proves that optimal kill policy is
to continually decrease the IFT's, but use up all the time
available.

Solution: Gives an algorithm for finding the V's. Also shows
hod to find the best n.

Lagrange multipliers

B2



Ga&S1. GARG, R.C., and SINGH, N., "A Stochastic Duel in a Hunter-Killer
Game - If" The Symposium on Operations Research, No. 1ý2, 1970,pp.- 183-192

FD -CR~'T (both ned)

(1) combat time is ned

3 states (2) no contact- time is ned all CRV's

* (3) reclose & continue time is
general pdf

General Solutions: LT's of time-functions of various states; in
particular that A or B has won at time t
after each has expended a certain number of
rounds

Examples: (1) reclose and continue time is ned
(c•cmplete solution)

(2) same as (1), but FM only

differential difference eouations
Laplace transforms
supplementary variable technique
geometric transforms

r
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IrM FP.

Fir

* Gr 1. GROVES, Arthur D., "The Mathematical Azwa•mis of a Simple Duel,"
Ballistic Research Laboratory Report No. 1261, Aberdeen Proving
Grounds, Md.., August, 1964, 23 pp., DDC No. AD-609 195.

FD - FIFT - A starts with a f3ed time advantage (time he fires

* before B does)

General Solution: in matrix form

(1) state probabilities after m cycles

(2) P[A], P[B], P[AB]

Numerical examples

Harkov chains

number theory - matrix maniplations
geoetric transforms

B-3



* H 1. HARRIS, Terrell J., "In•y Versus )arz Stochastic DIels," Caywood-
Schiller Associates Report, Chicago, Illinois, Fall 1967, 18 pp.

FD - CIFT- A general IFT

B ned InT

General Solutions: for P[A], P(B] in LT and geometric
transforms for mean number of rounds fired
to a victory for A

Exmles: (1) A's IFT-Erl•ng (k)
(2) A's IFT-mixture of ned's

renewal theory
geometric transforms
Laplace transforms

I

I

SB- 32



7. ... ..• .

J & B1. JAIGWAL, N.K., and BNASHAIM, N., "Stochastic Duels With Flight
Time and Replenishment," OPSEARCH (India), Vol. 3, No. 4,
1966, pp. 169-185.

(Also, Defence Science Laboratory Report, Delhi-6, India, 1966,
* 22 pp.)

(Also, R•! 5, pp. 45-67)

FM - CRIFT - fixed amunit ion supply at start

- ammition replenishment of a fixed amount at times
with pdf (ned)

- TCF is CRV

General Solution: LT of h(t)

Special cases: (1) no replenishment, LT of h(t)

(2) no replenishment, initial supply a discrete

(3) no replenishment, unlimited ammmition,
LT of h(t)

(4) zero flight-time, LT of h(t)

(5) zero flight-time, no replenishment and
initial supply is fixed, LT of h(t)

(6) zero flight-time, no replenishment and
initial supply is a discrete RV, LT of
h(t)

(7) flight-time zero, no replenishment, un-
limited azmmmition, LT of h(t)

FD - CRIPT - fixed ammunition supply at start

- a iuntion replenishment of a fixed amount at times with
pdf (ned)

- TOF is CRV

General Solutions: P(A], P(B], P(AB]
Examples : (1) IIFT' s nodTals's ned - unlimited amunition

ITOF's ned

(2) MI'sN ned - unlimited ammunition, zero flight-
time for B

¶ curves in BH3

(3) IT's ned-both zero flight-time, unlimited
amunition7 (4) In's ned-both flight-times zero (in Bh3)

- B unlimited a-nunition

differential difference equations
geometric transformsSLaplace transforms
su sme.entarv va iables



Sic 1. KIMBLETCK, Stephen R., "Attrition Rates for Weapons With Markov-
Dependent Fire," Opert.-ona Research, Vol. 19, No. 3, May-June,
1971, pp. 698-7o6.

FM- FIFT - Markov dependent hit probabilities (dependent on states)
3 states, random nmaber of multiple hits to kill

General Solutions: Laplace transform of N (number of rounds to
a kill), E.N],, V([N, pm of N

If T is time-to-kJl, Laplace transform ofpmnf of To E[T], V[T1

Markov chain theory
renewal theory
difference equations
Laplace transforms
geometric transforms

FD
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KW&B1. KWON, T.Y., and BAI, D.S., "Stochastic Duals With Multiple Hits
and Limited Ammunition Supply," Korea Advanced Institute of
Science Report, Secul, Korea, April, 1978, 23 pp.

FM - CRIT (1) Fixed number of hits to a kill

(2) Random number of hits to a kill - geometrically
* distributed, i.e.: Ntramter - PriAkil I hit]

(3) Fixed number of hits to a kill; ammunition limit-
ation a discrete RV

(4) Random number of hits to a kill (geometrically
distributed); ammunition limitation (geometric-
ally distributed)

(5) Fixed number of rounds fired simultaneously
(pattern); fixed probability of a pattern hitting,
each round in pattern which hits has fixed
probability of a kill

(6) Limited amunition a discrete RV; fixed number of
rounds fired simultaneously with fixed probability
of a pattern hitting and each round in a pattern
kills with a fixed probability

General Solutions : LT h(t)

FD - CRIM - Both sides same as FM (1), (2) and (3)

General Solutions: P(A), P(B], P(AB]

Examples: (a) fixed number of hits to a kill; ammunition limit
a geometric discrete RV; IFT's ned

(b) geometric number of hits to a kill; geometric
distribution for number of rounds, IFT's ned
- curves

(c) pattern firing (5) above, with IFT's ned

(d) pattern firing (6) above, with geometric distri-
bution for number of rounds, IFT's ned
- curves

mixture technique
Laplace transforms

• • Case (2) also derived using renewal theory
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34&Al. MDHAJ, C., and AROIRA, S.D., "Oni a Problem In Naval Defense,"
Operations Research., Vol. 12,, No. 2j, March- April., 1963,

p.194&-196.

FM - CRWFT (noed)

2 sate ~(1) combat - time length inne

(2 ) between enggements - time length general pdf

Although V? is ned,, only fifring times when hits
occur are considered, so these events are ned with
a parameter pr (not r)-

General Solution: LT of time to n hits

E~pe between- between-engagements time ned
also, expected time for n hits

differential differencas equations
supplementary variable technique
Laplace transforms
geometric transforms
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F

X&Jl. KAMBRJHAJ, A., and JAIN, O.C., "Stochastic Duals With Damiige,"
Operatin Research, Vol. 20, No. 2, March-April, 1972,

(Also, Defence Science Imboratory Report; Delhi-6, India, undated,
13 pp.)

FM- CRIFT (1) Amont of damage per round Is a discrete RV with
a ]pf. Damege is independent round-to-round and
cumulative until total is a kill (predetermined
total damage)

(2) D9mge per found is a CRV with pdf; otherwise,
same as (1) above

(3) Damage is t~ime-h oseneoii, i.e., dawge Increase
in a t -pincrease)&t + O(At ),where
increase is a discrete RV

General Solutions : cf h(t)

!XXIe: three discrete damage states for (1), MT ned

FD- CRIF - same for both as (1), (2) -.• .**) above.. plus

(4) Damage states are: no damage, damage, •d1tl.
Given damage, the amount is a CIV with a
cumulative upper lUnit c. •ig a kill.

General Solutions: P(A], P[B]

Examples: (a) three discrete damage stater, i>.• (1), IFT's
ned

(b) for (3) above, two discrete damage ý&ates

difference equations
geometric trarsforms
renewal theory
differential difference equations
characteristic functions



R&Sl. RUSTAGI, J.S.0 and SRIVASTAVA# R.C., "Parameter Estimation in a
Wirkov-Dependent Firing Distribution," O2arations Research,
Vol. 16, No. 6, Nov.-Dec., 1968, pp. 1222-1227.

FM - FDIT - Two Narkov-dependent states

- liltiple hits (r) to get a killP different first
round hit probability

General Solution: pf (geometric transform) of N (number
of rounds to get r hits)

MLE of the three parameters involved

Markov chain theory
renewal theory
geometric transforms

B-38i
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S5a 1. 8AVYR, David, "Asynchronous Dodging Duels," private cimnicationi,
19 August, 1970, pp. 5'-69.

FD FIFT - equal IFTM's

A starts first; B starts later, by an amount < IFT

Each can either hit, miss or near-mse, causing a dis-

placement and the lose of one firing time (while

remaining vulnerable.)

General Solutions: P[A], P(B]

Boolean algebra



Sc 1. SCH MK, I.J., "Some Weapon System &irvival Probability Models - I.
Fixed Time Between Firings,' Operations Research, Vol. 10, No. 2,
March-April, 1962, pp. 155-167.

FD - FIFT - A has a fixed time advantage (surprise) over B

(1) Eqwa firing times (a), A's advantage < a

General Solution: P[A survives to time t]

P [A) same for B

Numerical examples and exumple a, b not equal (special case where
a and b are fixed IFT's)

(2) Sam as (1) abgve, with lethal radius from a circular
Normal(zero, r)pdf

A evacuates after firing k rounds

General Solution:

P[A is alive time T after initiating evacuation]

Numerical examples

(3) Equal firing times; A fires first with probability p.
A evacuates after k > 3 rounds, evacuation distance RV

General Solution:

P[A is alive time T after initiating evacuation I A is
alive to evacuate]

Numerical example

cobinatorial methods

Sc 2. SCHODERBEK, J.J., "Some Weapon System Survival Probability Models -

II. Random Time Between Firings," Operations Research, Vol. 10,
No. 2, March-April, 1962, pp. 168-179.

FD - CRET (both ned)

(1) Kill probabilities and rates of fire are continuous
functions of time

general Solutions: P[A In alive at time t.l,
fP[A] sman toi D

.i .tim b .... ... ...l
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Sc 2. (cont'd)
Nhumerical EweDAles: kill pmrobabilities and rates of fire consant

FD - CRI3T (both ned)

(2) Sam as (1), but A evacuates at time tO (A Is vulnerable
during evacuation). A moves a distance which Is Rafrleih
distributed.

General Solution: P[A survivies evacuation IA is alive to start]
and P[A survives evacuation]

differential equations

Z-



V

SSr&Gl. SRIVASTAVA$ S.S., and GCARG, R.C., "Two-Sided A/S Warfare With
Limited Ameunititn and Range of Fire Poer," Trabajos Ae
Estadistics Y de Inventiacion Operativa, Vol. XXIII0 , Madrid,
Spain, 1972, pp. 155-14-7.

FD- CRIF - •ITts (both ned) - both limited aumition

4 states:

(1) Seeking contact- time is general pdf

(2) Closing in-time is general pdf All CV's
() Comnbat - time is ned

(4) Release from combat- time is ned
(before starting (i) ain)

General Solutions: LT's of time function of various states given
above. In particular, that A wins or B
wins, or a draw has occurred at time t,
after each has fired a specified number of
rounds

Example: seeking contact and closing in; both ned; general
solutions as given above, inverse LT's of these
functions and same functions at t -

differential difference equations
supplementary variable technique
Laplace transform

I0", .'+



Sr, G
& SI. SRIVASTAVA, S.S., GARG, R.C., and SINGH, N., "A Stochastic Duel Ira Hunter-Killer Game - III," Cahiers du Centre d'Etudes de

Recherche OPerationnelle (Belgium), Vol. 11, No. 2, July, 1969,
pp. 104-i3.

FD - CRIFT's (both ned)

4 states:

(1) Closing

(2) Combat All these times are CRV's with general pdf's

(3) No contact

(4) Reclose & continue

General Solutions: Bivariate geometric transform of LT of
time functions of various states. In
particular, that A (or B) has won at
time t after each has expended a specified
number of rounds.

differential difference equations
supplementary variables techrique
geometric transforms
Laplace transform
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TI. THOMPSON, David E.• "Reliability and Mobility in the Theory of
Stochastic Duels, Part F, Ch. 1, pp. 573-612, in Develo~aent of
Analytical Models of Pattalion Task Force Activities, ed. by S.
Bonder and R. Farrell. Report No. SRL 1957, FR 70-1(U), Systems
Research Laboratory, Dept. of Industrial Engineering, University of
Michigan, September, 1970, DDC No. AD714677.

(Also, "Mobility and Reliability in the Theory of Stochastic Duels,"
Master's Thesis, Dept. of Industrial Engineering, University of
Michigan, Ann Arbor, Michigan, 8 August, 1968.)

(Also, DSL C2147 WP 68-4(U), Defense Systems Laboratory, University
of Michigan, Ann Arbor, Michigan, 31 October, 1968.)

:A

(Also, "Reliability and Mobility in the Theory of Stochastic Duels,"
a chapter, PP. o73-612s in Develofent of Models for Defense Systems
Planni•, ed. S. Bonder and R. Farrell, Techr.ical Report (U)
S RT, 21V T TO-2, Systems Research Laboratory, Dept. of Industrial
Ergineering, University of Michigu, Ann Arbors Micnigan September,
1970.)

FD - CRIFT

(i) Weapon life time a CRV
(a) no withdrawal

General Solution: P[A], P[B], P[AB] in terms of pdf'sand df'esR

Egg L•e : IFT's - ned, weapon lifetimes nedA

(b) withdrawal at failure times

Ceneral Solution: P[(], P[P], F[AB] in terms of pdf's
ta a d, ts

Example: IFT's - ned, weapon lifetimes ned.
Can be shown to be ease as A2 (1)(a)

(c) withdrawal at next firing time wfter failure

General Solution- PjA], P[Zl, P[AB] in erms uf lpf'e
wan df Is

Exmie: IFT's - ned, wrspon lifetimes- ned.

Discuseion of significance of failure rates.

B- 44
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n. (ccnt'd)

(2) Rond-dependent failures - round number on which failure occurs
is a discrete RV

(a) no withdrawal

General Solutions: P(A], P(B], P[AB] in term of pdf's
and df's

Shown to be same as Al
(b) withdrawal at failure times (no delay);

sane as Al special case

(c) withdrawal at next round after failure - fixed kill
probabilities

General Solutions: P[Al, P[B], PEAB] in terms of pdf's
and df's

Example• IFT's ned

FM - CRIFT (ned)

(3) Time-dependent kill prcbabilities

General Solution: h(t) in terms of pdf's and df's

FD- CRIFT's (ned) - Time-dependent kill probabilities

General Solutions: PEA], P[B], P(-X] in terms of pdf's
and df's

A' a 2 a imiArly, for B
(r +

(a, r and v, constants)

FM - CEPTI (ned)

(4) Tim-dependent kill probabilities and time-dependent firing
rates

General Solution: h(t) in terms of pdf'tc
and df'W

B-45
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TI. (cont'd) PA(t) rA(t)

FD - same, and special cae: . - k

elementary probability arguments
mixture technique
(3) uses stochastic differential equation method

T2. THOMPSON, David E., "Stochastic Duels Thvolving Reliability,"
Naval Research Logistics Quarterly, Vol. 19, No. 1, March, 1972,
pp. 145-l 4 6.

Covers some but not all of Tf

One new case, 2(c), round-dependenic withdrawal at next firirg time
after failure and probability of failure on any given round is a
discrete RV

General Solutions: P[A], P[BJ, P(AB) in terms of pdf's and df's

mixture technique
elementary probability arguments

B-46
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A RiI

WI. WILLIAMS, Trevor, "Stochastic Duels -nIIl, System Development Corporation,
Santa Monica, CA., Document, SP-1017/003/o, 1, Sept, 1963. 61 pp.
DDC No. AD420-515.

FM- CRIFT - Cumulants of h(t ) (up to the fourth) derived In terms
of cumulants of IFT pdf

FD - CRIFT - In times-to-kill as Erlang (k) functions

General Solutio_: Using FM above, can be used as an approximation

to M__ FD using means and variances of IFT's

Illustrat ions

FD- CRIFT - Approximate solution In terms of means and variances of
IFT's and kill probabilities (2 terms of an infinite
series)

mixture theory
moment generating functions
finite calculus

W2. WILLIAAS, Trevor, "Stochastic Duels With Homing," System Development
Corporation, Santa Monica, CA., Document, SP-1017/106/00, 18 may,
1965, 34 pp., DDC No. AD-617-773.

(Also, "Stochastic Duels- III," System Development Corporation, Santa
Monica, CA., Document SP-1017/006/OO, 22 June, 1964, 72 pp.
DDC No. AD-I43-75..)

FD-CRIFT (both ned)h

Hit probability, (pn), round-dependent and increasing, with

probability of a hit on n-th round (IIn ) a discrete RV with
pmf a negative binomial

p - hit~ - where n- E(N), N the RV, round on

vhich hit occurs

This causes P1 < P < p.

General Solution: P[AJ, P[B]

- Curves comparing outcome vs pA, pb(instead of PA, PA2)
for various parameter values

-NULE of P and I where k is a perameter in Erlang(k)

mixture theory
moment generating functions
geometric transforms

Z
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W&Al. WILLIAMS, Trevor, and ANCWKR, C.J., Jr., "Stochastic Duels," Operations
Research, Vol. -11, No. 5, Sept.-Olt., 1963s, pp. 803-817.

(Also, Sytem Developmnt Crpora•tion, Santa Monica, CA., Document
SP-1017/000/01, 20 March, 196%3, 22 pp., DDC No. AD-400 637.)
FD- CRIFT

General Solution: P[A], P[P]

Exar wes: (1) IFT's both ned - curves
(2) M's both Erlang (2) - curves

FD - CRIFT- Both fire simultaneously at time zero ("classical duel")

General Solution: )?[A], P[B], P[AB]

Fo : IFT"I both ned - curves

FD- CRIFT - A fires first 1/A the time, B fires first 1/2 the time
(tactical equity)

General Solution: P[A], PEB]

Exumple: M's both ned - curves

FD - CRIFT - For a random initial period of time, one side or the other
may fire with impunity (i.e., the other side cannot return
fire) - called "Random Initial surprise" - time advantage
a CRV - positive values are A's advantage, negative
values are B's advantage

General Solution: P[A], P[B]

Example: IFT's ned and surprise time N(Oo ), curves

mixture theory

characteristic functions

B.
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W &AP. WILLIAMS, G. Trevor (ed. by ANCIER, C.J., Jr.), "Stochastic Duels
With Disp•acements (Suppression),' U.S. Army RADOC Systems
Analysis Activity, White Sands Missile Range, New Mexico, TPASA1A
Technical Memorandum 3-77, March, 1978, 8 pp., DDC No. AO- 52146.

FD-CRDT (both ned)

A miss may be a complete miss or a near miss. A near miss may
either be a kill or cause a movement (suppression of fire) which
lasts a time which is a CRV (both ned)

Contestant is vulnerable during a displacement (suppression),
but cannot return fire

General Solution: P[A]

difference equations
conditional probabilities

AB-

it

L i B-149



Zi. ZINEp, A., "Concentrated Firing in Mwnr Versus M)ny Duels,"
Universite du Quebec, Montreal, unpubliahed, July, 1978, 27 pp.

FD - Alternat, firing

- Fixed multiple hits to a kill required

(different for each side)

General Solutions: P(A I B starts), P(A I A starts),

P(drA starts), P(BIB starts)

difference squat ions
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